Produtos tubulares de alta qualidade oriundos dos melhores fabricantes – Somos os líderes do mercado.

Filter by Category

HYDROGEN AND STAINLESS STEEL

Desculpe, este conteúdo só está disponível em English. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Hydrogen and stainless steel are connected together because like many other energy industries, the hydrogen energy sector is reliant on stainless steel.

But why is this? Read this blog to find out more about hydrogen and stainless steel, the benefits of stainless steel and its many applications within this fast-paced and growing industry.

Hydrogen and stainless steel

The hydrogen energy industry

The use of hydrogen as an energy source is becoming increasingly prolific. This is because the benefits of using hydrogen to heat our homes and fuel our cars are undeniable, and the reality is that the world is starting to adapt to be able to accommodate the use of hydrogen.

There is a growing understanding that pure hydrogen is the ‘ultimate’ clean fuel which certainly makes it seem futuristic. Indeed, it has its roots in the stars in more ways than one as not only is it one of the most common elements in the world and stars around us, but hydrogen fuel cells were also used to provide onboard electricity for the Apollo 11 moon landing in 1969.

When hydrogen is burnt it reacts with oxygen in the air to produce only energy and water, as opposed to releasing carbon dioxide like natural gases.

However, the production, processing, storage and use of hydrogen presents significant challenges. This is because the materials required to transport it and store it safely have to have an extremely high strength to withstand high pressures and resist extremely low and high temperatures.

The good news is that stainless steels, especially austenitic grades, are ideally suited to meet the challenges of hydrogen.

Hydrogen and stainless steel – the benefits of stainless steel

Here are some of the benefits of stainless steel that make it the ideal metal to store and transport hydrogen:

  •  – High strength
  •  – High ductility also at low temperatures
  •  – Long service life; low life-cycle costs
  •  – High resistance to hydrogen embrittlement

Hydrogen and stainless steel – the applications of stainless steel     

Some of the applications of stainless steel within the hydrogen industry are as follows:

  •  – Hydrogen storage and pipelines
  •  – PEM fuel cells and electrolysers
  •  – Solid oxide fuel cells and electrolysers
  •  – Tank systems on vehicles
  •  – Systems at fuel stations

Stainless steel as hydrogen storage

Usually, when hydrogen is stored and transported, it is liquified which means that its temperature has to be reduced to as low as -253°C. Austenitic stainless are safe to use in this situation and they can cope with this environment as they have a very high ductility.

Another way in which hydrogen is stored and transported is to compress gaseous hydrogen at high pressures, which can sometimes as high as 800 bar. In a worst-case scenario, this could lead to hydrogen embrittlement in some materials because the diffusion of the hydrogen gas into the surface of the material storing or transporting it could eventually result in cracking. Again, austenitic stainless steel is the steel of choice in this scenario because hydrogen diffusion is much lower in austenite, compared to ferrite and martensite metals.

Since many storage facilities will be in coastal areas with a salt-laden environment, the corrosion resistance of stainless steel becomes an important factor. The natural extension from storage is to filling stations, such as for refuelling a fuel cell vehicle. The properties of stainless steel make it ideal for the manufacture of fuel dispensers, tubes and compressors.

Stainless steel and hydrogen fuel cells and electrolysers

Specialised fuel cells are used to convert hydrogen and oxygen into energy and water, while electrolysers use energy and water to create hydrogen and oxygen. Stainless steel is yet again the metal of choice and can be found in many of the components that make these processes possible. These include interconnectors, the substrate for bipolar plates, anode- and cathode- plates, endplates, frames and connecting parts.

The actual grade of stainless steel that is chosen will depend on the operating temperature and environmental conditions. Stainless steel’s ability to resist corrosion, as well as its high strength means that the dimensions and size fo the components can be optimised for each situation.

Electrolysis and stainless steel

The process of electrolysis is used to produce hydrogen energy. It occurs when an electric current is used to split water into hydrogen and oxygen. One of the most exciting things about this process is that the electric current can be produced through renewable sources, such as solar or wind. This means that the resulting hydrogen can be considered renewable as well.

To make this process possible, stainless steel is required to make many of the processes possible that are needed for water desalination and purification. Its ability to resist corrosion makes it a perfect metal in this situation. The actual grade of stainless steel used will be dependent on the water composition and temperature.

The future of hydrogen and stainless steel

Some of the applications used to create and harness hydrogen energy are already established, while others need much more research and development. One of the biggest areas of development will be the infrastructure required to ensure that the production of hydrogen energy is as efficient as possible and so that it can reach the people that need it and use it the most.

Many innovative and dynamic industrial companies are working hard on these solutions and new processes, techniques and developments are coming to light every day.

What cannot be denied is that hydrogen and stainless steel will always be interconnected as the properties of stainless steel make it the ideal metal to be used in this industry. Stainless steel’s ideal combination of electrical conductivity, high corrosion resistance, excellent formability, high strength and performance means that it will remain an important part of the worldwide efforts to reach net zero carbon through the use of hydrogen energy.

SPM and hydrogen and stainless steel

Special Piping Materials’ exotic pipes, fittings and flanges are already extensively used across the energy sector, and the hydrogen energy sector is no exception to this. Our stainless steel, duplex and super duplex products are perfect for use in this fast-paced and demanding industry.

Fast, efficient delivery to your exact specification. Special Piping Materials is as committed to your project as you are.

Speak to one of our seven worldwide
offices today

INGLATERRA

Special Piping Materials Ltd Broadway, Globe Industrial Estate, Dukinfield, Cheshire, SK16 4UU, United Kingdom

ESCÓCIA

Special Piping Materials (Scotland) Ltd Moss Road, Gateway Business Park, Aberdeen, AB12 3GQ

EUA

Special Piping Materials INC 4615, Kennedy Commerce Drive, Houston, Texas-77032

Brasil

Special Piping Materials Do Brasil Ltda. Estrada do Mato Alto, 912 Campo Grande, Rio de Janeiro – RJ – CEP 23036-150

SINGAPURA

Special Piping Materials (Singapore) Pvt Ltd 43, Kian Teck Drive, Singapore-628856

Dubai

Special Piping Materials Fze P.O.Box: 120667, Sharjah Airport Free Zone, Sharjah – UAE

Oman

Special Piping Materials Authorised representative for Oman Petrovision International LLC, PB NO: 1497, Postal Code 133, Al Khuwair, Oman.

AUSTRÁLIA

Special Piping Materials Australia Pty Ltd 11 Purser Loop Bassendean Western Australia 6054